Communicating well when programming (Computational Thinking for Digital Technologies PO5) ## **Facilitators Notes** ## **Purpose** These notes are intended to support teachers and leaders facilitate the pīkau *Communicating well when programming (CTDT PO5)* to a group of teachers, for example, in a staff meeting. ## Pre-requisites #### **Essential:** As a minimum participants should have completed the pīkau - First steps in programming (CT PO 1) (EMP05) - Programming with Sequence and Output (CT PO 2) (EMP06) - What is Programming (EMP07) - Making the Computer do the Work: Programming with Loops (CT PO3) (EMP08) - Getting Programs Right: the End-user and Fast Algorithms (CTDT PO4) (EMP09) It is best if participants have also completed the pīkau *What is Computational Thinking* and *Computational Thinking: the international perspective* before this pīkau. # Preparation Complete the pīkau yourself. Ask participants to bring their laptops. If they don't already have a Kia Takatū account they should set one up via https://kiatakatu.ac.nz/ so they can access the pīkau directly to participate in the activities. Activity 1: Can you escape the loop? Participants will work through the two questions within the pīkau either individually or in pairs. They will need access to the Kia Takatū website. Activity 2: Build your own looping program here! Participants have a go at rebuilding the Scratch program to count down to a chosen event. They will need access to the Kia Takatū website. Activity 3: Participants will work through the quiz within the pīkau either individually or in pairs. #### Related pīkau: First steps in programming: CT PO 1 (EMP05) and Programming with Sequence and Output: CT PO2 (EMP06), What is Programming (EMP07) and Making the Computer do the Work: Programming with Loops (CT PO3) (EMP08), Getting Programs Right: the End-user and Fast Algorithms (CTDT PO4). ### **Facilitation notes** Access to a data projector or shared screen and speakers to present the pīkau is recommended. These are arranged in the order that the content appears in the pīkau. Estimated time: 70-75 minutes (without activities), 85 - 90 minutes with activities (recommended). This is a longer pīkau. You may want to split presenting this over two sessions. The times given are as a suggestion only. Following the suggested times will ensure the pīkau is completed in the overall suggested time. | Section | Facilitation notes | |--|--| | Introduction and What you'll learn 2 minutes | The key points of this section are that you will learn how to: • Summarise comparative and logical operators • Describe different data types • Describe types of control structures • Recognise similarities between block based and text based languages • Describe methods of program documentation | | Why this matters 2 minutes | The key points of this section are: • We write programs for people, not computers | | Links to existing knowledge
2 minutes | The key point of this section is: • The content of this pīkau builds on directly from what has been learnt in previous pīkau. | | Variables for different types of data 12 minutes | The key points of this section are: • If you use spreadsheets you may already be familiar with some of this. | | | The most common types of variable that beginners will encounter are 'text' (string), | |--|---| | | 'integer' and 'floating point number' (float). | | Controlled loops 12 minutes | The key point of this section is: • Controlled loops enable programs to continue until a specific criteria is met. | | Activity 1: Can you escape the loop? 5 minutes | Take the quiz as either individuals or in pairs. Discuss any differences of opinions. (Teachers could implement the programs if you want to confirm what they do!) | | Writing for the next programmer 10 minutes | The key points of this section are: Other people need to be able to understand how our programs work for a variety of reasons. By using clear variable names and comments it is easy to ensure a program can be understood | | There's more than one way to do it (Using loops in Scratch) 6 minutes | The key points of this section are: There can be as many different programs for the same problem as there are programmers Some programs are more flexible and robust than others. | | Activity 2: Build your own looping program here! 5 minutes | Participants have a go at rebuilding the Scratch program to count down to a chosen event. They will need access to the Kia Takatū and Scratch websites. | | Using loops in Python 7 minutes | The key point of this section is: • Loops are expressed similarly in both block based and text based languages. | | Logical and comparative operators 10 minutes with just first video 15 minutes watching both videos | The key points of this section are: Comparator operators include <, >, = The basic Logical operators are 'and', 'or', and 'not' By combining comparator and logical operators programs are able to make all sorts of decisions to select what a program will do. | | Logical and comparative operators quiz 5 mins | Take the quiz as either individuals or in pairs. Discuss any differences of opinions. | | Links to programme design 2 mins | The key point of this section is: • Comparative and logical operators can be applied in other curriculum areas. | | Wrapping up and where to next? 6 mins | The key point of this section is: This pīkau has built on what has been taught | |---------------------------------------|---| | | in previous pīkau. This pīkau covers most of what is in Computational thinking for computational thinking progress outcome 5, which the last progress outcome before NCEA. This pīkau does not cover heuristics for HCI or binary numbers, which will be covered in separate pīkau. |